Lines in two columns are not in same line. How to fix this?

1,009

I think you're abusing the multicols environment -- don't! A better solution consists of creating two side-by-side minipage environments, each of width 0.5\textwidth, and each containing a single align* environment.

Also, do familiarize yourself with the \text macro of the amsmath package; it's meant to be used when typesetting snippets of non-math material inside an equation.

enter image description here

\documentclass{article}
\usepackage{amsmath,amssymb,geometry}
\begin{document}

\noindent
\begin{minipage}{0.5\textwidth}
\begin{align*}
Q_1&=\text{Size of $(N/4)$\textsuperscript{th} item}\\
   &=\text{Size of $(200/4)$\textsuperscript{th} item}\\
&=\text{Size of 50\textsuperscript{th} item}\\
\intertext{$\therefore Q_1$ lies in the class 35--37.}
Q_1&= L + \frac{N/4 - c\cdot f}{f} \times i\\
  L&=35,\ N/4=50,\ c\cdot f=14,\ f=62,\ i=2\\
Q_1&=35+\frac{50-14}{62}\times 2=35+1.16=36.16
\end{align*}
\end{minipage}% % no whitespace between the "minipage" environments
\begin{minipage}{0.5\textwidth}
\begin{align*}
Q_3&=\text{Size of $(3N/4)$\textsuperscript{th} item}\\
   &=\text{Size of $(3\cdot 200/4)$\textsuperscript{th} item}\\
   &=\text{Size of 150\textsuperscript{th} item}\\
\intertext{$\therefore Q_3$ lies in the class 38--40.}
Q_3&= L + \frac{3N/4 - c\cdot f}{f} \times i\\
  L&=38,\  3N/4=150,\  c\cdot f=76,\  f=99,\  i=2\\
Q_3&=38+\frac{150-76}{99}\times 2=38+1.49=39.49
\end{align*}
\end{minipage}

\end{document}
Share:
1,009

Related videos on Youtube

Jai Kumar
Author by

Jai Kumar

Updated on August 01, 2022

Comments

  • Jai Kumar
    Jai Kumar over 1 year
    \begin{multicols}{2}
    \begin{align*}
    Q_1&=Size\;\;of\;\;\left({\frac{N}{4}}\right)\;\;{th}\;item\\
    &=Size\;\;of\;\;{\frac{200}{4}}\;\;{th}\;item\\
    &=Size\;\;of\;\;50^{th}\;item
    \end{align*}
    $\therefore Q_1$ lies in the class $35-37$.
    \begin{align*}
    Q_1&= L + \frac{\frac{N}{4} - c.f}{f} \times i\\
    L&=35,\;\;N/4=50,\;\;c.f=14,\;\;f=62,\;\;i=2\\
    Q_1&=35+\frac{50-14}{62}\times 2=35+1.16=36.16
    \end{align*}
    \begin{align*}
    Q_3&=Size\;\;of\;\;3\left(\frac{N}{4}\right)\;\;{th}\;item\\
    &=Size\;\;of\;\;{\frac{3\times 200}{4}}\;\;{th}\;item\\
    &=Size\;\;of\;\;150^{th}\;item
    \end{align*}
    $\therefore Q_3$ lies in the class $38-40$.
    \begin{align*}
    Q_3&= L + \frac{\frac{3N}{4} - c.f}{f} \times i\\
    L&=38,\;\;3N/4=150,\;\;c.f=76,\;\;f=99,\;\;i=2\\
    Q_3&=38+\frac{150-76}{99}\times 2=38+1.49=39.49
    \end{align*}
    \end{multicols}